Софт и программы на сайте soft.mydiv.net
Расширение и сжатие PDF Print E-mail
Written by Administrator   
Saturday, 07 April 2012 08:15

На рис. 3.2 показаны основные операции при расширении и сжатии спектра системы DS-CDMA.

Рис. 3.2. Расширение и сжатие в DS-CDMA

Предполагается, что здесь данные пользователя представляют собой битовую последовательность с двухпозиционной фазовой манипуляцией (BPSK), передаваемую со скоростью R, где биты данных пользователя имеют значения ±1. Операция расширения в этом примере - это умножение каждого бита данных пользователя на последовательность из 8 кодовых битов, называемых чипами. Мы предполагаем, что это относится также к модуляции расширения, использующей BPSK. Мы видим, что полученные в результате расширения данные передаются со скоростью 8 R и имеют такой же случайный (шумоподобный) вид, что и код расширения. В этом случае можно сказать, что мы использовали коэффициент расширения равный 8. Затем этот широкополосный сигнал передается по беспроводному каналу на приемный конец.

При сжатии мы умножаем расширенные данные пользователя/последовательность чипов, бит за битом на те же самые 8 кодовых чипов, которые использовали во время расширения этих битов. Как показано на рисунке 3.2, исходная битовая последовательность пользователя отлично восстанавливается при условии, что мы имеем также точную синхронизацию расширенного сигнала пользователя и точную копию кода расширения (сжатия).

Умножение скорости передачи сигналов на коэффициент 8 соответствует расширению (на коэффициент 8) занимаемого спектра частот расширенным сигналом данных пользователя. Благодаря этому достоинству системы CDMA чаще называют системами с расширенным спектром. Сжатие восстанавливает ширину полосы частот пропорционально R сигнала.

Принцип действия корреляционного приемника для CDMA показан на рис. 3.3. Верхняя половина рисунка показывает прием полезного собственного сигнала. Как и на рис. 3.2, здесь мы видим операцию сжатия при идеально синхронизированном коде. Затем корреляционный приемник интегрирует (т.е. суммирует) получающиеся произведения (данные код) для каждого бита пользователя.

Рис. 3.3. Принцип действия корреляционного приемника CDMA

Нижняя половина рис. 3.3 демонстрирует влияние операции по сжатию, когда оно относится к сигналу CDMA другого пользователя, сигнал которого, как полагают, был расширен с использованием другого кода расширения. Результат умножения сигнала помехи на собственный код и интеграция получающихся произведений приводят к тому, что значения сигнала помехи оказываются близкими к 0. Как можно видеть, амплитуда собственного сигнала увеличивается в среднем на коэффициент расширения 8 относительно амплитуды сигнала пользователя другой создающей помехи системы, т.е. корреляционный прием позволил увеличить полезный сигнал на коэффициент расширения, в данном случае в 8 раз, по сравнению с сигналом помехи, присутствующем в системе CDMA. Этот эффект называется "выигрышем в отношении сигнал/шум при обработке сигнала" и является фундаментальным показателем для всех систем CDMA и вообще для всех систем с расширенным спектром. Выигрыш в отношении сигнал/шум при обработке сигнала - это то, что делает системы CDMA робастными в отношении внутренней интерференции, а это необходимо для повторного использования имеющихся несущих с частотой 5 МГц на географически близких расстояниях.

Приведем пример с реальными параметрами WCDMA. Передача речи со скоростью 12,2 Кбит/с дает выигрыш при обработке равный 25 дБ = 10 log10(3,84e6/12,2e3). После сжатия необходимо, чтобы мощность сигнала, как правило, была на несколько децибел выше мощности помехи и шума. Необходимая плотность мощности по отношению к плотности мощности помехи в данной книге обозначается как Eb/N0, где Eb энергия или плотность мощности на бит пользователя и N0 плотность мощности помехи и шума. Для передачи речи Eb/N0 обычно составляет порядка 5,0 дБ, и необходимое отношение широкополосного сигнала к помехе будет поэтому 5,0 дБ минус выигрыш при обработке = 20,0 дБ. Другими словами, мощность сигнала может быть на 20 дБ ниже мощности помехи и теплового шума, а приемник WCDMA все еще будет способен принимать сигнал. Отношение широкополосного сигнала к помехе называется также отношением сигнал/помеха на частоте несущей C/I. Благодаря расширению и сжатию C/I в WCDMA может быть ниже, чем, например в GSM. Речевой трафик в GSM требует C/I = 9 12 дБ.

Поскольку широкополосный сигнал может быть ниже уровня теплового шума, его прием затруднен без знания расширяющей последовательности. По этой причине системы с расширенным спектром впервые нашли военное применение, где широкополосный характер сигнала позволяет скрыть его под постоянно действующим тепловым шумом.

Отметим, что в любой заданной ширине полосы частот канала (скорости передачи чипов) мы будем иметь больший выигрыш при обработке для более низких скоростей передачи данных пользователя, чем для более высоких. В частности, для скорости передачи данных пользователя 2 МГц выигрыш при обработке составляет менее 2 (=3,84Мчип/с ? 2Мбит/с=1,92, что соответствует 2,8 дБ), и робастность сигнала WCDMA по отношению к помехе явно компрометируется. Характеристики WCDMA при высоких скоростях передачи приводятся в разделе 11.4.

Как базовые станции, так и подвижные станции, для режима WCDMA используют по существу этот тип корреляционного приемника. Однако из-за многолучевого распространения (и возможно, при множестве приемных антенн) необходимо использовать соответствующее множество корреляционных приемников для того, чтобы восстановить энергию от многих лучей и/или антенн. Такая совокупность корреляционных приемников называемая "пальцами", ("тратами"), составляет то, что включает в себя понятие приемника Rake CDMA. Мы опишем работу приемника Rake CDMA. Более подробно в следующем разделе, но перед этим мы сделаем несколько заключительных замечаний относительно преобразования расширение/сжатие при использовании его в беспроводных системах.

Важно понять, что само по себе расширение/сжатие не обеспечивает какого-либо улучшения сигнала для беспроводных применений, В самом деле, выигрыш в отношении сигнал/помеха при обработке получается за счет увеличенной ширины полосы частот при передаче (умноженной на величину выигрыша при обработке).

Все преимущества WCDMA идут скорее "через заднюю дверь" мимо широкополосных качеств сигнала при рассмотрении на системном уровне, а не на уровне отдельного радиоканала:

  1. Выигрыш в отношении сигнал/помеха в совокупности с широкополосным характером сигнала предполагает возможность полного повторного использования частоты, коэффициент повтора равен 1, в различных сотовых ячейках беспроводной системы (т.е. частота повторно используется в каждой ячейке/секторе). Это свойство может использоваться для получения высокой эффективности использования спектра.
  2. Совместное использование многими пользователями одной и той же широкополосной несущей для их связи обеспечивает разнесение по помехам, т.е. помехи при множественном доступе от многочисленных пользователей системы усредняются, и это снова приводит к повышению пропускной способности по сравнению с системами, где при планировании необходимо ориентироваться на помехи для худшего случая.
  3. Однако, оба вышеуказанных преимущества требуют применения жесткого управления мощностью и мягкого хэндовера для того, чтобы избежать блокирования сигналом одного пользователя другим. Управление мощностью и мягкий хэндовер будут рассматриваться в этой главе далее.
  4. При использовании широкополосного сигнала различные пути распространения беспроводного радиосигнала могут получать разрешение с более высокой точностью, чем сигналы с более узкой шириной полосы. Это ведет к получению более разнообразных возможностей борьбы с замираниями и, тем самым, к улучшению рабочих характеристик.

 

Многолучевые радиоканалы и прием Rake

Распространение радиоволн в канале наземной подвижной связи характеризуется наличием большого числа отражений, дифракцией и затуханием энергии сигнала. Причиной всему этому являются естественные препятствия, например здания, холмы и т. д., а результатом оказывается многолучевое распространение. Многолучевое распространение ведет к двум последствиям, которые мы будем рассматривать в данном разделе.

  1. Энергия сигнала (относящаяся, например к одному чипу сигнала CDMA) может поступать в приемник в четко различимые моменты времени. Поступающая энергия "вмазывается" в определенный профиль задержки при многолучевом распространении: см., например рис. 3.4. Интервал задержки в городских и пригородных районах обычно составляет от 1 до 2 мкс, хотя в некоторых случаях в холмистых районах наблюдались задержки до 20 мкс при достаточно высокой энергии сигнала. Длительность чипа при скорости передачи 3,84 Мчип/с равна 0,26 мкс. Если разница по времени многолучевых составляющих будет по крайней мере 0,26 мкс, то приемник WCDMA сможет разделить эти многолучевые компоненты и сложить их когерентно при многолучевом распространении. Задержку длительностью 0,26 мкс можно получить, если разница в протяженности лучей составит по крайней мере 78 м (скорость света ? скорость передачи чипов = 3,0·108 мс-1 ? 3,84 Мчип/с). При скорости передачи чипов около 1 Мчип/с разница в длинах лучей многолучевых составляющих должна быть около 300 м, что невозможно получить в небольших ячейках. Поэтому легко видеть, что WCDMA с тактовой частотой 5 МГц может обеспечить многолучевое разнесение в небольших ячейках, что невозможно в системе IS-95.
  2. Кроме того, для определенного значения временной задержки обычно имеется множество лучей почти равной длины, по которым распространяется радиосигнал. Например, лучи с разницей по длине равной половине длины волны (при частоте 2 ГГц это приблизительно 7 см) поступают фактически одновременно по сравнению с лучами, имеющими разность хода 78 м и между которыми возникает задержка равная длительности чипа (при скорости передачи 3,84 Мчип/с). В результате в приемнике, который перемещается даже на меньшие расстояния, имеет место подавление полезного сигнала, называемое бы-стрыми замираниями. Подавление полезного сигнала лучше всего представляется как сложение нескольких взвешенных векторов, которые получают фазовый сдвиг (обычно длина радиоволны по модулю) и затухание вдоль заданного направления в определенный момент времени.

На рис. 3.5 показан примерный вид быстрого замирания, воспринимаемый по поступающей энергии сигнала при конкретном значении временной задержки при движении приемника. Мы видим, что мощность принимаемого сигнала может резко падать (на 20 - 30 дБ), когда происходит фазовое подавление за счет отражений при многолучевом распространении. В определенных геометрических условиях, вызывающих явления замирания и рассеяния, изменения сигнала, обусловленные быстрыми замираниями, происходят на несколько порядков чаще, чем изменения среднего профиля задержки при многолучевом распространении.

Рис. 3.4. Многолучевое распространение приводит к получению многолучевого профиля задержки

Статистика в отношении средней энергии принимаемого сигнала за короткий период обычно хорошо описывается рэлеевским распределением. Эти перепады энергии, обусловленные замираниями, делают прием передаваемых битов данных без ошибок делом весьма затруднительным, поэтому в WCDMA необходимо принимать соответствующие контрмеры. Такие контрмеры по борьбе с замираниями приведены ниже.

  1. Рассеянная энергия сигналов с задержкой складывается за счет использования множества каналов Rake (корреляционных приемников), настроенных на те значения задержки, с которыми поступают сигналы со значительной энергией.
  2. Для смягчения проблемы, связанной с замиранием мощности сигнала, используются быстрое управление мощностью и разнесенный прием приемником Rake.
  3. Используются протоколы мощного кодирования, перемежения и повторения передачи для увеличения избыточности и разнесения по времени сигнала, и тем самым оказывается помощь приемнику в восстановлении битов пользователя, подвергшихся воздействию замираний.

Динамика распространения радиоволн обусловливает следующие принципы работы при приеме сигналов CDMA.

  1. Определить позиции временной задержки сигналов, поступающих со значительной энергией и выделить для них корреляционные приемники, т.е. те тракты каналы Rake, которые настроены на эти пики. Сетка измерений по длительности для получения профиля задержки при многолучевом распространении составляет величину порядка одного чипа (обычно в пределах 0,25 0,5 длительности чипа) со скоростью обновления порядка десятых долей миллисекунд.
  2. В каждом корреляционном приемнике требуется проследить быстро изменяющиеся значения фазы и амплитуды, обусловленные процессом битовых замираний, и убрать их. Этот процесс слежения должен быть очень быстрым при скорости обновления порядка 1 мс или меньше.
  3. Просуммировать демодулированные и отрегулированные по фазе символы во всех активных трактах и передать их в декодер для дальнейшей обработки.

Рис.3.5. Быстрые рэлеевские замирания, вызванные многолучевым распространением

На рис. 3.6 обозначены тракты приема 2 и 3 путем изображения символов модуляции (BPSK или QPSK), а также мгновенного состояния канала в виде взвешенного комплексного вектора. Для оказания содействия решению по тракту 2 WCDMA использует известные пилотные символы, которые применяются для зондирования канала и получения оценки состояния канала в дан-ный момент времени (значения взвешенного вектора) для конкретного тракта. Затем принятый символ вращается в обратную сторону с тем, чтобы устранить вращение фазы, вызванное каналом. Такие канально компенсированные символы затем могут просто складываться для восстановления энергии во всех поло-жениях, имеющих задержку. Такая обработка называется также сложением по максимальному отношению (MRC).

Рис. 3.6. Принцип сложения по максимальному отношению в приемнике Rake CDMA

В соответствии с этими принципами на рис. 3.7 представлена блок-схема приемника Rake с тремя трактами. Оцифрованные выборки входных сигналов принимаются от входных каскадов ВЧ и представляются в виде квадратурных ветвей I и Q (т.е. в формате комплексного числа фильтра нижних частот на выходе приемника). Генераторы кода и коррелятор осуществляют сжатие и суммирование символов передачи данных пользователя. Устройство канала использует пилот-символы для оценки состояния канала, влияние которого затем будет скомпенсировано фазовращателем для принятых символов. Задержка компенсируется разницей во времени прибытия символов в каждый тракт. Далее сумматор Rake складывает компенсированные канальные символы, обеспечивая тем самым разнесение при многолучевом распространении как средство борьбы с замираниями.

Показан также согласованный фильтр, используемый для определения и обновления текущего профиля задержки при многолучевом распространении в канале. Этот измеренный и возможно усредненный профиль задержки при многолучевом распространении используется затем для сложения сигналов с выходов трактов приемника Rake с наибольшими пиковыми значениями.

В типичных реализациях приемник Rake, осуществляющий обработку со скоростью передачи чипов (коррелятор, генератор кодов, согласованный фильтр), выполняется на ASICs (специализированных интегральных схемах), тогда как обработка на уровне символа (устройство оценки канала, фазовращатель, сумматор) реализуются с помощью DSP (процессора цифровой обработки сигналов). Хотя и существуют некоторые различия между приемниками Rake и WCDMA на подвижной станции и базовой станции, все основные принципы работы, представленные здесь, одинаковы.

Рис. 3.7 Блок-схема приемника Rake WCDMA

И наконец, мы отмечаем, что множество приемных антенн может приспосабливаться так же, как множество лучей, принимаемых от одной антенны: просто путем использования дополнительных трактов Rake к антеннам мы можем принять всю энергию от множества лучей и антенн. С позиции приемников Rake по сути нет разницы у этих двух видов разнесенного приема.