АСПЕКТЫ БЕЗОПАСНОСТИ В СТАНДАРТЕ GSM PDF Print E-mail
Written by Administrator   
Friday, 04 May 2012 17:35

Общее описание характеристик безопасности

Сотовые системы подвижной связи нового поколения в состоянии принять всех потенциальных пользователей, если будут гарантированы безопасность связи: секретность и аутентификация. Секретность должна исключить возможность извлечения информации из каналов связи кому-либо, кроме санкционированного получателя. Проблема аутентификации заключается в том, чтобы помешать кому-либо, кроме санкционированного пользователя (отправителя), изменить канал, то есть получатель должен быть уверен, что в настоящий момент он принимает сообщение от санкционированного пользователя. Основным способом обеспечения секретности является шифрование. Относительно новая концепция - использование шифрования как способа аутентификации сообщений.

Аутентификация сообщений через шифрование осуществляется за счет включения в текст так называемого кода идентификации (то есть фиксированного или зависящего от передаваемых данных слова, которое знают отправитель и получатель или которое они могут выделить в процессе передачи). Получатель расшифровывает сообщение, путем сравнения получает удостоверение, что принимаемые данные являются именно данными санкционированного отправителя.

К системе шифрования предъявляются следующие основные требования:

1) нелинейные связи между исходным текстом и зашифрованным текстом;

2) изменение параметров шифрования во времени.

Если алгоритмы шифрования отвечают первому требованию, то, не зная ключа, исключается возможность изменить код идентификации, чтобы избежать обнаружения факта несанкционированного доступа. Второе требование исключает возможность нарушения работы системы за счет воспроизведения "обнаружителем" принятого ранее и записанного в память сообщения.

Один путь обеспечения этих требований - применение синхронных систем передачи, но при этом необходимы системы цикловой и тактовой синхронизации, что во многих случаях неприемлемо.

Второй путь - включение в информационную последовательность (каждое сообщение) временных меток так, чтобы зашифрованные данные были бы однозначно с ними связаны. Алгоритмы шифрования делятся на два класса [5.1-5.3];

- классические алгоритмы;

- алгоритмы с открытым ключом.

Классические алгоритмы используют один ключ для шифрования-дешифрования. Алгоритмы с открытым ключом используют два ключа:

первый - для перехода от нешифрованного текста к шифрованному; второй - для обратного перехода от шифрованного к нешифрованному. Причем знание одного ключа не должно обеспечить обнаружение второго ключа. В этих алгоритмах один из ключей, обычно используемый для шифрования, можно сделать общим, и только ключ, используемый для расшифровки, должен быть засекречен. Эта особенность очень полезна для снижения сложности протокола и интеграции структур шифрования в сетях связи.

Алгоритмы шифрования с открытым ключом построены на определении односторонней функции, то есть некоторой функции f, такой, что для любого х из ее области определения f (х) легко вычислима, однако практически для всех у из ее области значений нахождение х, для которого y=f(x) вычислительно, не осуществимо [5.1-5.3]. То есть, односторонняя функция является отдельной функцией, которая легко рассчитывается ЭВМ в приемлемом объеме времени, но время расчета обратной функции в существующих условиях недопустимо большое.

Первый алгоритм шифрования с общим ключом был назван RSA (первые буквы фамилий авторов Rivest, Shamir, Adieman) [5.1-5.3]. Алгоритм базируется на двух функциях Е и D, связанных соотношением:

D (Е(*) = Е (D(*)).

Одна из этих функций используется для шифрования сообщений, другая - для дешифрования. Секретность алгоритма основана на том, что знание функции Е (или D) не открывает легкого способа вычисления D (или Е). Каждый пользователь делает общей функцию Е и хранит в секрете функцию D, то есть для пользователя Х есть открытый ключ Ех и секретный Dx.

Два пользователя А и В могут использовать алгоритм RSA, чтобы передать любое зашифрованное сообщение. Если абонент А хочет отправить сообщение М абоненту В, то он может сделать это следующим образом:

- зашифровать сообщение М;

- подписать сообщение М;

- зашифровать и подписать М. В первом случае: А обеспечивает преобразование М, используя открытый ключ

С = Ев (М)

и посылает его абоненту В. В принимает С и вычисляет db (с) = db (Ев (М)) = М.

Во втором случае: А подписывает М посредством вычисления F = Da (М)

и посылает F абоненту В (эти операции может осуществлять только пользователь А, которому известен секретный ключ Da). В получает F и вычисляет

Еа (F) = Еа (Da (М)) = М.

В теперь известно, что сообщение М действительно послано пользователем А. В этом случае секретность сообщения М не гарантируется, так как все могут осуществить такую же операцию с использованием общего ключа Еа. В третьем случае: А вычисляет

F = Da (М) и С = Ев (F) = Ев (Da (М);

А посылает С к В. В получает С и вычисляет db (с) = db (Ев (F)) = Da (М); В может теперь легко получить М, вычислив Еа (Da (М)) = М.

До операции шифрования и подшей каждое сообщение М должно разделяться на блоки фиксированной длины, затем каждый блок кодируется как совокупность фиксированного числа цифр. RSA кодер оперирует такими отдельными блоками в каждом цикле кодирования. Полное описание алгоритма RSA изложено, например, в [5.1, 5.2].

Алгоритм шифрования с открытым ключом RSA обеспечивает высокую степень безопасности передачи речевых сообщений и рекомендован к использованию в цифровых системах подвижной радиосвязи нового поколения.

В стандарте GSM термин "безопасность" понимается как исключение несанкционированного использования системы и обеспечение секретности переговоров подвижных абонентов. Определены следующие механизмы безопасности в стандарте GSM [5.4, 5.5]:

- аутентификация;

- секретность передачи данных;

- секретность абонента;

- секретность направлений соединения абонентов.

Защита сигналов управления и данных пользователя осуществляется только по радиоканалу. 


Рассмотрим последовательно механизмы безопасности в стандарте GSM, общий состав секретной информации, а также ее распределение в аппаратных средствах GSM системы. При этом будем использовать термины и обозначения, принятые в рекомендациях GSM.